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Abstract. Let F be a finite field and G = GL(4, F ). In this paper, we

explicitly calculate a certain twisted Jacquet module of an irreducible cuspidal
representation of G.

1. Introduction

Let F be a finite field and G = GL(n, F ). Let P be a parabolic subgroup of
G with Levi decomposition P = MN . Let π be any irreducible finite dimensional
complex representation of G and ψ be an irreducible representation of N . Let πN,ψ
be the sum of all irreducible representations of N inside π, on which π acts via the
character ψ. It is easy to see that πN,ψ is a representation of the subgroup Mψ

of M , consisting of those elements in M which leave the isomorphism class of ψ
invariant under the inner conjugation action of M on N . The space πN,ψ is called
the twisted Jacquet module of the representation π. It is an interesting question to
understand for which irreducible representations π, we have πN,ψ is non-zero and
to understand the structure of πN,ψ as a module for Mψ. When P is the Borel
subgroup of G and ψ is a non-degenerate character of N , a well known result of
Gelfand and Graev [2] says that πN,ψ is at most one dimensional. There is also the
work of Kawanaka [6] on generalized Gelfand-Graev representations.

In this paper, motivated by the work of Prasad in [7], we study the structure of
a certain twisted Jacquet Module of a cuspidal representation of GL(4, F ). Before
we state our result, we set up some notation and mention the work of Prasad.
Let G = GL(2n, F ) and P = MN be the standard maximal parabolic subgroup
of G corresponding to the partition (n, n). Then, M ' GL(n, F ) × GL(n, F ) and
N 'M(n, F ). Let ψ be any character of N ' M(n, F ) and ψ0 be a fixed non-trivial
character of F . It is easy to see that there exists A ∈ M(n, F ) such that ψ = ψA,
where ψA(X) = ψ0(Tr(AX)). The group GL(n, F ) × GL(n, F ) acts on the set of
characters of M(n, F ) via,

(g1, g2).ψA = ψg−1
2 Ag1

and we get a decomposition of the set of characters of M(n, F ) into disjoint orbits
with respect to the above action. For 0 ≤ i ≤ n, we let

Ai =

ï
Ii 0
0 0

ò
∈ M(n, F ),

where Ii is the identity matrix in GL(i, F ). The matrices Ai, 0 ≤ i ≤ n form a set
of representatives for the orbits under the above action. When i = n, the character
ψAn is a representative for the orbit of the non-degenerate characters of M(n, F ).
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In [7], Prasad explicitly describes πN,ψA as a module for MψA , when π is an irre-
ducible cuspidal representation of GL(2n, F ), ψA is the character of N given by
ψA(X) = ψ0(Tr(AX)) where A = An. More recently in [4], the work of Prasad was
generalized to GL(kn).

In this paper, we explicitly calculate the twisted Jacquet module of an irreducible
cuspidal representation π of GL(4, F ) when A = A1 ∈ M(2, F ). In other words, we
take ψA to be a degenerate character of M(2, F ) and calculate the twisted Jacquet
module πN,ψA . Before we state our theorem, we set up some notation. We write
Fm for the unique field extension of F of degree m. Let

L =

ßï
1 x
0 y

ò
| y ∈ F×, x ∈ F

™
, U =

ßï
1 x
0 1

ò
| x ∈ F

™
and

Z =

ßï
a 0
0 a

ò
| a ∈ F×

™
' F×.

We write L and U for the opposite of L and U respectively. We write µ for a fixed

non-trivial additive character of U and w =

ï
0 1
1 0

ò
. We write µw : U → C× for

the character of U given by

µw
Åï

1 0
x 1

òã
= µ

Å
w

ï
1 0
x 1

ò
w−1

ã
= µ

Åï
1 x
0 1

òã
.

Theorem 1.1. Let π = πθ be an irreducible cuspidal representation of GL(4, F )
attached to a regular character θ of F×4 . Let ψ0 be a non-trivial additive character of

F and A =

ï
1 0
0 0

ò
. Let ψA be the character of N given by ψA(X) = ψ0(Tr(AX)).

Then,

πN,ψA ' (θ|F× ⊗ indL̄Ū µ
w)⊗ indLU µ

as MψA modules.

We establish the above isomorphism by explicitly calculating the characters of

πN,ψA and (θ|F× ⊗ indL̄Ū µ
w)⊗ indLU µ, and showing that they are equal at any arbi-

trary element of MψA . Currently we are investigating the problem for GL(2n, F ).
We will write up the details at a later time.

It is also interesting to study the case when the finite field is replaced with a
p-adic field. Our hope is that understanding the problem for the finite group case
might help in understanding the problem in the p-adic case. We hope to study
these problems in future.

2. Preliminaries

In this section, we mention some preliminary results that we need in our paper.

2.1. Character of a Cuspidal Representation. Let F be the finite field of order
q and G = GL(m,F ). The representation theory of GL(m,F ) is due to J.A. Green
[5]. In this section, we recall some results about computing the character values
of a cuspidal representation. Let Fm be the unique field extension of F of degree
m. A character θ of F×m is called a “regular” character, if under the action of the
Galois group of Fm over F , θ gives rise to m distinct characters of F×m . It is a well
known fact that the cuspidal representations of GL(m,F ) are parametrized by the
regular characters of F×m . To avoid introducing more notation, we mention below
only the relevant statements on computing the character values that we have used.
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Theorem 2.1 (Green). Let θ be a regular character of F×m . Let π = πθ be an
irreducible cuspidal representation of GL(m,F ) associated to θ. Let Θθ be its char-
acter. If g ∈ GL(m,F ) is such that the characteristic polynomial of g is not a
power of a polynomial irreducible over F . Then, we have

Θθ(g) = 0.

See Page 130 in [3] for the statement of the above theorem.

Theorem 2.2 (Green). Let θ be a regular character of F×m . Let π = πθ be an irre-
ducible cuspidal representation of GL(m,F ) associated to θ. Let Θθ be its character.
Suppose that g = s.u is the Jordan decomposition of an element g in GL(m,F ).
If Θθ(g) 6= 0, then the semisimple element s must come from F×m . Suppose that s
comes from F×m . Let z be an eigenvalue of s in Fm and let t be the dimension of
the kernel of g − z over Fm. Then

Θθ(g) = (−1)m−1

ï d−1∑
α=0

θ(zq
α

)

ò
(1− qd)(1− (qd)2) . . . (1− (qd)t−1)

where qd is the cardinality of the field generated by z over F , and the summation
is over the distinct Galois conjugates of z.

See Theorem 2 in [7] for this version.

2.2. Twisted Jacquet Module. In this section, we recall the character and the
dimension formula of the twisted Jacquet module of a representation π.

Let G = GL(k, F ) and P = MN be a parabolic subgroup of G. Let ψ be a
character of N . For m ∈ M , let ψm be the character of N defined by ψm(n) =
ψ(mnm−1). Let

V (N,ψ) = SpanC{π(n)v − ψ(n)v | n ∈ N, v ∈ V }

and

Mψ = {m ∈M | ψm(n) = ψ(n),∀n ∈ N}.

Clearly, Mψ is a subgroup of M and it is easy to see that V (N,ψ) is an Mψ-invariant
subspace of V . Hence, we get a representation (πN,ψ, V/V (N,ψ)) of Mψ. We call
(πN,ψ, V/V (N,ψ)) the twisted Jacquet module of π with respect to ψ. We write
ΘN,ψ for the character of πN,ψ.

Proposition 2.3. Let (π, V ) be a representation of GL(k, F ) and Θπ be the char-
acter of π. We have

ΘN,ψ(m) =
1

|N |
∑
n∈N

Θπ(mn)ψ(n).

Proof. Consider the projection of V given by

PN,ψ(v) =
1

|N |
∑
n∈N

π(n)ψ−1(n)v.
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We have,

ΘN,ψ(m) = Tr(πN,ψ(m))

= Tr(π(m)|V/V (N,ψ))

= Tr(π(m) ◦ PN,ψ)

=
1

|N |
∑
n∈N

Tr(π(mn))ψ(n)

=
1

|N |
∑
n∈N

Θπ(mn)ψ(n).

�

Remark 2.4. Taking m = 1, we get the dimension of πN,ψ. To be precise, we have

dimC(πN,ψ) =
1

|N |
∑
n∈N

Θπ(n)ψ(n).

2.3. Character of the induced representation. In this section, we recall the
character formula for the induced representation of a group G. For a proof, we refer
the reader to Chapter 3, Theorem 12 in [8].

Proposition 2.5. Let G be a finite group and H be a subgroup of G. Let (π, V )
be a representation of H and χπ be the character of π. Then for each s ∈ G, the
character of indGH(π) is given by

χindGH(π)(s) =
1

|H|
∑
t∈G

tst−1∈H

χπ(tst−1).

3. Preliminary calculations for computing the dimension

In this section, we make some preliminary calculations that we need to compute
the dimension of the twisted Jacquet module that we study in this paper.

Let M(n,m, r, q) denote the set of n×m matrices of rank r over the finite field
F of cardinality q. It is well known that we have

# M(n,m, r, q) =

r−1∏
j=0

(qn − qj)(qm − qj)
(qr − qj)

.

For an elementary proof of this fact, we refer the reader to Theorem 2 in [1].

In our case, we have n = m = 2 and r ∈ {0, 1, 2}. Using the above formula we
can compute the number of matrices in M(2, F ) with a fixed rank. We summarize
this information in the following table.

Table 1. Number of matrices in M(2, F ) with a fixed rank r

r 0 1 2

#M(2, 2, r, q) 1 (q2 − 1)(q + 1) (q2 − 1)(q2 − q)

Let A =

ï
1 0
0 0

ò
. For α ∈ F , consider the subset Y α2,r of M(2, F ) given by

Y α2,r = {X ∈ M(2, F ) | Rank(X) = r,Tr(AX) = α}. (3.1)
4



We compute the cardinality of the subset Y α2,r for a fixed rank r ∈ {0, 1, 2} and a
fixed trace α ∈ F . We give the details of the calculation below.

For X =

ï
a b
c d

ò
, we have AX =

ï
a b
0 0

ò
. Suppose that Rank(X) = r ∈ {0, 1, 2}

and Tr(AX) = α ∈ F . Let Y α2,r be as in (3.1).

Lemma 3.1. Let α, β ∈ F×. Then we have

#Y α2,r = #Y β2,r.

Proof. Let X ∈ Y α2,r. Since Tr(AX) = α, we have X =

ï
α b
c d

ò
. Let K =ï

βα−1 0
0 1

ò
. Consider the map φ : Y α2,r → Y β2,r given by

φ(X) = KX.

Since K is invertible, it follows that φ is injective. For Z =

ï
β p
n s

ò
∈ Y β2,r, let

X =

ï
α pαβ−1

n s

ò
. Then X ∈ Y α2,r and φ(X) = Z. Hence the result. �

From Lemma 3.1, it is enough to consider the following cases to count the car-
dinality of Y α2,r.

a) r = 0, α ∈ F .
b) r = 1, α = 0.
c) r = 1, α = 1.
d) r = 2, α = 0.
e) r = 2, α = 1.

In case a), since r = 0, it follows that X is the zero matrix. Hence it follows that

#Y α2,0 =

®
1, α = 0

0, α 6= 0.

In case b), since α = 0, we have a = 0. Therefore,

X =

ï
0 b
c d

ò
=
[
X1 X2

]
.

If c = 0, since r = 1, X2 6= 0. Therefore, we get (q2 − 1) such matrices. If c 6= 0,
since r = 1, we have X2 = βX1 for some β ∈ F . It follows that

X =

ï
0 0
c βc

ò
.

Therefore, we get (q − 1)q such matrices. Thus we have

#Y 0
2,1 = 2q2 − q − 1.

In case c), since α = 1, we have a = 1. Therefore,

X =

ï
1 b
c d

ò
=
[
X1 X2

]
.

Since r = 1, if c = 0, we have X1 6= 0, X2 = βX1. Hence

X =

ï
1 β
0 0

ò
.
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Therefore, we get q such matrices. If c 6= 0, since r = 1, we have X2 = βX1 for
some β ∈ F . It follows that

X =

ï
1 β
c βc

ò
.

Therefore, we get (q − 1)q such matrices. Thus we have

#Y 1
2,1 = q2.

In case d), since α = 0, we have a = 0. Therefore,

X =

ï
0 b
c d

ò
=
[
X1 X2

]
.

Since r = 2, we have c 6= 0, and X2 6= βX1. We can choose X1 in (q − 1) ways
and X2 in (q2 − q) ways. Therefore, we get (q− 1)(q2 − q) such matrices. Thus we
have

#Y 0
2,2 = q(q − 1)2.

In case e), since α = 1, we have a = 1. Therefore,

X =

ï
1 b
c d

ò
=
[
X1 X2

]
.

Since r = 2, if c = 0, we have

X =

ï
1 b
0 d

ò
=
[
X1 X2

]
where X1 6= 0, X2 6= βX1. Thus we have (q2 − q) such matrices. If c 6= 0, since
r = 2, we have

X =

ï
1 b
c d

ò
=
[
X1 X2

]
where X1 6= 0, X2 6= βX1. We can choose X1 in (q − 1) ways and X2 in (q2 − q)
ways. Therefore, we get (q − 1)(q2 − q) such matrices. Thus we have

#Y 1
2,2 = q2(q − 1).

We summarize the details of the above computations in the following table.

Table 2. Cardinality of Y α2,r

r 0 1 2

α = 0 1 2q2 − q − 1 q(q − 1)2

α 6= 0 0 q2 q2(q − 1)

4. Dimension of the twisted Jacquet module

Let θ be a regular character of F×4 and let π = πθ be an irreducible cuspidal
representation of GL(4, F ). We write Θθ for the character of π = πθ. Let A =ï
1 0
0 0

ò
and ψA : N → C× be the character of N given by

ψA

Åï
1 X
0 1

òã
= ψ0(Tr(AX)). (4.1)

In this section, we calculate the dimension of πN,ψA . Before we continue, we record
a preliminary lemma that we need.
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Lemma 4.1. Let r ∈ {0, 1, 2} and X ∈ M(2, 2, r, q). We have

Θθ

Åï
1 X
0 1

òã
=

{ (q − 1)(q2 − 1)(q3 − 1), if r=0
−(q − 1)(q2 − 1), if r=1

(q − 1), if r=2.

Proof. The character values can be computed using Theorem 2.2 above. �

Theorem 4.2. Let θ be a regular character of F×4 and π = πθ be an irreducible
cuspidal representation of GL(4, F ). We have

dimC(πN,ψA) = (q − 1)2.

Proof. It is easy to see that the dimension of πN,ψA is given by

dimC(πN,ψA) =
1

q4

∑
X∈M(2,F )

Θθ

Åï
1 X
0 1

òã
ψ0(Tr(AX)). (4.2)

We calculate the following sums

a) S1 =
∑

X∈M(2,2,0,q)

Θθ

Åï
1 X
0 1

òã
ψ0(Tr(AX))

b) S2 =
∑

X∈M(2,2,1,q)
Tr(AX)=0

Θθ

Åï
1 X
0 1

òã
ψ0(Tr(AX)) +

∑
X∈M(2,2,1,q)
Tr(AX)=α6=0

Θθ

Åï
1 X
0 1

òã
ψ0(Tr(AX))

c) S3 =
∑

X∈M(2,2,2,q)
Tr(AX)=0

Θθ

Åï
1 X
0 1

òã
ψ0(Tr(AX)) +

∑
X∈M(2,2,2,q)
Tr(AX)=α6=0

Θθ

Åï
1 X
0 1

òã
ψ0(Tr(AX))

separately to compute the dimension of πN,ψA .

For a), we clearly have

S1 = Θθ

Åï
1 X
0 1

òã
ψ0(0)

= (q − 1)(q2 − 1)(q3 − 1).

For b), we have

S2 = Θθ

Åï
1 X
0 1

òãÜ ∑
X∈M(2,2,1,q)

Tr(AX)=0

ψ0(0) +
∑

X∈M(2,2,1,q)
Tr(AX)=α6=0

ψ0(α)

ê
= Θθ

Åï
1 X
0 1

òã (
#Y 0

2,1 −#Y 1
2,1

)
= −(q − 1)(q2 − 1)(q2 − q − 1).
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For c), we have

S3 = Θθ

Åï
1 X
0 1

òãÜ ∑
X∈M(2,2,2,q)

Tr(AX)=0

ψ0(0) +
∑

X∈M(2,2,2,q)
Tr(AX)=α6=0

ψ0(α)

ê
= Θθ

Åï
1 X
0 1

òã (
#Y 0

2,2 −#Y 1
2,2

)
= (q − 1)(q − q2).

From (4.2), it follows that

dimC(πN,ψA) =
1

q4
{S1 + S2 + S3}

=
1

q4
{(q − 1)(q2 − 1)(q3 − 1)− (q − 1)(q2 − 1)(q2 − q − 1) + (q − 1)(q − q2)}

= (q − 1)2.

�

5. Main theorem

Let G = GL(4, F ) and P be the maximal parabolic subgroup of G. We have
P = MN , where M ' GL(2, F ) × GL(2, F ) and N ' M(2, F ). Let π = πθ be
an irreducible cuspidal representation of G where θ is a regular character of F×4 .
Let ψ0 be a fixed non-trivial additive character of F . In this section, we explicitly
calculate the twisted Jacquet module πN,ψA where ψA is the character of N defined
in (4.1). Before we state our main result, we recall some notation and record a few
preliminary lemmas that we need.

Let L =

ßï
1 x
0 y

ò
| y ∈ F×, x ∈ F

™
, U =

ßï
1 x
0 1

ò
| x ∈ F

™
and Z =ßï

a 0
0 a

ò
| a ∈ F×

™
. We write L and U for the opposite of L and U respectively.

We write µ for a fixed non-trivial additive character of U and w =

ï
0 1
1 0

ò
. We

write µw : U → C× for the character of U given by

µw
Åï

1 0
x 1

òã
= µ

Å
w

ï
1 0
x 1

ò
w−1

ã
= µ

Åï
1 x
0 1

òã
.

Lemma 5.1. Let MψA = {m ∈M | ψmA (n) = ψA(n),∀n ∈ N}. Then we have

MψA =

ßa 0
c d

a r
0 s

 | a, d, s ∈ F×, c, r ∈ F™.
Proof. Trivial.

�
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Lemma 5.2. Let H =

ßï
a 0
c d

ò
| a, d ∈ F×, c ∈ F

™
and L =

ßï
1 x
0 y

ò
| y ∈

F×, x ∈ F
™

. Then H and L are subgroups of GL(2, F ) and we have

MψA ' H × L.

Proof. For m ∈MψA (as in Lemma 5.1), consider the map φ : MψA → H ×L given
by

φ(m) =

Åï
a 0
c d

ò
,

ï
1 ra−1

0 sa−1

òã
.

Clearly, φ is an isomorphism of MψA onto H × L. Indeed, for m1,m2 ∈ MψA ,
we have

φ(m1m2) =

Åï
a1a2 0

c1a2 + d1c2 d1d2

ò
,

ï
1 r2a

−1
2 + r1s2a

−1
2 a−1

1

0 s1s2a
−1
2 a−1

1

òã
= φ(m1)φ(m2).

It follows that φ is a homomorphism. It is trivial to see that φ is injective. The
result follows by observing that |MψA | = |H × L|.

�

Lemma 5.3. H ' F× × L.

Proof. Let h =

ï
a 0
c d

ò
∈ H. Clearly we have h = z` for some z ∈ Z and ` ∈ L.

Indeed, we have

h =

ï
a 0
0 a

ò ï
1 0

ca−1 da−1

ò
= z`.

Since Z and L are normal in H, it follows that H ' F× × L.
�

Theorem 5.4 (Main theorem). Let θ be a regular character of F×4 and π = πθ be an

irreducible cuspidal representation of G. Let ρ1 = θ|F× ⊗ indL̄Ū µ
w and ρ2 = indLU µ.

Then

πN,ψA ' ρ1 ⊗ ρ2

as MψA modules.

We prove Theorem 5.4 by showing that the character ΘN,ψA of πN,ψA is equal
to the character χρ of ρ = ρ1 ⊗ ρ2 for all elements m ∈MψA .

5.1. Character calculation for ρ. Let ρ1 = θ|F× ⊗ indL̄Ū µ
w and ρ2 = indLU µ. In

this section, we calculate the character of the representation ρ = ρ1 ⊗ ρ2.

Lemma 5.5. Let µ be a fixed non-trivial character of U . Consider the representa-
tion

ρ1 = θ|F× ⊗ indL̄Ū µ
w

of H. Let χρ1
be the character of ρ1. We have

χρ1

Åï
a 0
c d

òã
=


0, if a 6= d

θ(a)
∑
y∈F×

µ

Çñ
1 yca−1

0 1

ôå
, if a = d.
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Proof. Let t =

ï
1 0
x y

ò
∈ L and ` =

ï
1 0

ca−1 da−1

ò
. We have,

t`t−1 =

ï
1 0
x y

ò ï
1 0

ca−1 da−1

ò ï
1 0

−xy−1 y−1

ò
=

ï
1 0

x+ yca−1 − xda−1 da−1

ò
.

Since ρ1 = θ|F× ⊗ indL̄Ū µ
w, using the character formula for the induced represen-

tation, we have

χρ1

Åï
a 0
c d

òã
= χρ1

(z`)

= θ|F×

Åï
a 0
0 a

òã
χindL̄

Ū
(µw)

Åï
1 0

ca−1 da−1

òã
=
θ(a)

|U |

∑
t∈L

t`t−1∈U

µw(t`t−1)

=


0, if a 6= d

θ(a)
∑
y∈F×

µ

Çñ
1 yca−1

0 1

ôå
, if a = d.

�

Lemma 5.6. Let µ be a fixed non-trivial character of U . Consider the representa-
tion

ρ2 = indLU µ

of H. Let χρ2 be the character of ρ2. We have

χρ2

Åï
1 ra−1

0 sa−1

òã
=


0, if a 6= s∑

y∈F×

µ

Çñ
1 ra−1y−1

0 1

ôå
, if a = s.

Proof. Let t =

ï
1 x
0 y

ò
∈ L and k =

ï
1 ra−1

0 sa−1

ò
. We have,

tkt−1 =

ï
1 x
0 y

ò ï
1 ra−1

0 sa−1

ò ï
1 −xy−1

0 y−1

ò
=

ï
1 −xy−1 + ra−1y−1 + xsy−1a−1

0 sa−1

ò
.

Since ρ2 = indLU µ, using the character formula for the induced representation,
we have

χρ2

( ï
1 a−1r
0 a−1s

ò)
= χρ2(k)

=
1

|U |
∑
t∈L

tkt−1∈U

µ(tkt−1)

=


0, if a 6= s∑
y∈F×

µ

Çñ
1 ra−1y−1

0 1

ôå
, if a = s.

�
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Theorem 5.7. Let ρ = ρ1 ⊗ ρ2 and χρ be the character of ρ. For m ∈ MψA , we
have

χρ(m) =

{ θ(a) if c 6= 0, and r 6= 0
θ(a)(q − 1)2 if c = 0, and r = 0
−θ(a)(q − 1) if c 6= 0, r = 0 or c = 0, r 6= 0

if a = d = s. Otherwise, χρ(m) = 0.

Proof. For m ∈MψA ' H × L, we see that

χρ1

Åï
a 0
c a

òã
=

{
θ(a)(q − 1), if c = 0
−θ(a), if c 6= 0

and

χρ2

Åï
1 ra−1

0 1

òã
=

{
(q − 1), if r = 0
−1, if r 6= 0

.

Since χρ = χρ1
χρ2

, the result follows.
�

5.2. Character calculation for πN,ψA .

Let

M(2, 2, r, q) = {X ∈ M(2, F ) | Rank(X) = r},

S(r, α, β) = {X ∈ M(2, 2, r, q) | Tr(X) = α,Tr(AL1
−1X) = β}.

For m ∈MψA we write

m =

ï
L1

L2

ò
and z =

ï
L1 X

L2

ò
,

where L1 =

ï
a 0
c d

ò
, L2 =

ï
a r
0 s

ò
and X ∈ M(2, F ).

Theorem 5.8. Let π = πθ be an irreducible cuspidal representation of GL(4, F )
and Θθ be its character. For m ∈MψA , if a 6= d or a 6= s, then

ΘN,ψA(m) = 0.

Proof. We have

ΘN,ψA(m) =
1

q4

∑
X∈M(2,F )

Θθ(z)ψA(L1
−1X).

Let f(λ) be the characteristic polynomial of z. It is clear that

f(λ) = (λ− a)2(λ− d)(λ− s).

If a 6= d or a 6= s, then f(λ) is clearly not a power of an irreducible polynomial over
F . It follows from Theorem 2.1 that Θθ(z) = 0 and hence the result.

�

Theorem 5.9. Let m =

ï
L1

L2

ò
where L1 =

ï
a 0
c a

ò
and L2 =

ï
a r
0 a

ò
. Suppose

c 6= 0 and r 6= 0. Then, we have

ΘN,ψA(m) = θ(a).
11



Proof. It is easy to see that

ΘN,ψA(m) =
1

q4

∑
X∈M(2,F )

Θθ

ï
L1 X
0 L2

ò
ψA(L1

−1X)

To calculate the character value, we write

ΘN,ψA =
1

q4
{K0 +K1 +K2}

according to the rank of the matrix X and compute each of these terms. We
summarize the computations for K1 and K2 in the following tables.

Table 3. Computation for K1

Partition of M(2, 2, 1, q) X Θθ(z)ψA(L1
−1X) #S(1, α, β)

X ∈ S(1, 0, 0)

ï
0 y
z 0

ò
(−1)3θ(a)(1− q) (2q − 2)

X ∈ S(1, α, 0),

α ∈ F×
ï
0 y
z α

ò
(−1)3θ(a)(1− q) (2q − 1)

X ∈ S(1, α, β),

α ∈ F, β ∈ F×,

ï
aβ −z−1(α− aβ)aβ
z α− aβ

ò
(−1)3θ(a)ψ0(β) (q − 1)

α 6= aβ

X ∈ S(1, α, β)

α, β ∈ F×,

ï
aβ y
z 0

ò
(−1)3θ(a)ψ0(β) (2q − 1)

α = aβ

12



Table 4. Computation for K2

Partition of M(2, 2, 2, q) X Θθ(z)ψA(L1
−1X) #S(2, α, β)

X ∈ S(2, 0, 0)

ï
0 y
z 0

ò
(−1)3θ(a)(1− q) (q − 1)2

X ∈ S(2, α, 0),

α ∈ F×
ï
0 y
z α

ò
(−1)3θ(a)(1− q) (q − 1)2

X ∈ S(2, α, β),

α ∈ F, β ∈ F×,

ï
aβ y
z α− aβ

ò
(−1)3θ(a)ψ0(β) q2 − q + 1

α 6= aβ

X ∈ S(2, α, β),

α, β ∈ F×,

ï
aβ y
z 0

ò
(−1)3θ(a)ψ0(β) (q − 1)2

α = aβ

For simplicity, we let Θθ(z)ψA(L1
−1X) = DX . A simple computation shows

that we have

K1 =
∑

X∈M(2,2,1,q)

Θθ(z)ψA(L1
−1X) = A1 +A2 +A3 +A4

where we have

a) A1 =
∑

X∈S(1,0,0)

DX

b) A2 =
∑

X∈S(1,α,0)

α∈F×

DX

c) A3 =
∑

X∈S(1,α,β)

α∈F,β∈F×

α 6=aβ

DX

d) A4 =
∑

X∈S(1,aβ,β)

β∈F×

DX

Using Table 3, and computing A1, A2, A3 and A4, we have

a) A1 = (−1)3θ(a)(1− q)(2q − 2)
b) A2 = (−1)3θ(a)(1− q)(2q − 1)(q − 1)
c) A3 = (−1)3θ(a)(q − 1)(q − 1)(−1)
d) A4 = (−1)3θ(a)(2q − 1)(−1).

It follows that

K1 =
∑

X∈M(2,2,1,q)

Θθ(z)ψA(L1
−1X) = θ(a)(2q3 − 2q2 + 1). (5.1)

Using Table 4, and doing similar calculations we see that
13



K2 =
∑

X∈M(2,2,2,q)

Θθ(z)ψA(L1
−1X) = θ(a)(q4 − 2q3 + 2q2 − q). (5.2)

Trivially, we have

K0 =
∑

X∈M(2,2,0,q)

Θθ(z)ψA(L1
−1X) = θ(a)(q − 1). (5.3)

From (5.1), (5.2) and (5.3), it follows that

ΘN,ψA(m) = θ(a).

�

Theorem 5.10. Let m =

ï
L1

L2

ò
where L1 =

ï
a 0
c a

ò
and L2 =

ï
a r
0 a

ò
. Suppose

c 6= 0 and r = 0. Then, we have

ΘN,ψA(m) = −θ(a)(q − 1).

Proof. Proceeding in a similar way as in Theorem 5.9, we can compute the character
value. We record the calculations that we need in the following tables.

Table 5. Computation for K1

Partition of M(2, 2, 1, q) X Θθ(z)ψA(L1
−1X) #S(1, α, β)

X ∈ S(1, 0, 0)

ï
0 y
z 0

ò
If y 6= 0, (−1)3θ(a)(1− q) ; (q − 1);

If y = 0, (−1)3θ(a)(1− q)(1− q2) (q − 1)

X ∈ S(1, α, 0),

α ∈ F×
ï
0 y
z α

ò
If y 6= 0, (−1)3θ(a)(1− q); (q − 1);

If y = 0, (−1)3θ(a)(1− q)(1− q2) q

X ∈ S(1, α, β),

α ∈ F, β ∈ F×,

ï
aβ −z−1(α− aβ)aβ
z α− aβ

ò
(−1)3θ(a)(1− q)ψ0(β) (q − 1)

α 6= aβ

X ∈ S(1, α, β),

α, β ∈ F×,

ï
aβ y
z 0

ò
(−1)3θ(a)(1− q)ψ0(β) (2q − 1)

α = aβ

14



Table 6. Computation for K2

Partition of M(2, 2, 2, q) X Θθ(z)ψA(L1
−1X) #S(2, α, β)

X ∈ S(2, 0, 0)

ï
0 y
z 0

ò
(−1)3θ(a)(1− q) (q − 1)2

X ∈ S(2, α, 0),

α ∈ F×
ï
0 y
z α

ò
(−1)3θ(a)(1− q) (q − 1)2

X ∈ S(2, α, β),

α ∈ F, β ∈ F×,

ï
aβ y
z α− aβ

ò
(−1)3θ(a)(1− q)ψ0(β) q2 − q + 1

α 6= aβ

X ∈ S(2, α, β),

α, β ∈ F×,

ï
aβ y
z 0

ò
(−1)3θ(a)(1− q)ψ0(β) (q − 1)2

α = aβ

Using Table 5 and Table 6 and proceeding as in Theorem 5.9, we have

K1 =
∑

X∈M(2,2,1,q)

Θθ(z)ψA(L1
−1X) = θ(a)(q − 1)(−q4 + 2q2 − q − 1) (5.4)

and

K2 =
∑

X∈M(2,2,2,q)

Θθ(z)ψA(L1
−1X) = θ(a)(q − 1)(q − q2). (5.5)

Trivially, we have

K0 =
∑

X∈M(2,2,0,q)

Θθ(z)ψA(L1
−1X) = θ(a)(q − 1)(1− q2). (5.6)

Combining 5.4, 5.5 and 5.6, we conclude that

ΘN,ψA(m) = −θ(a)(q − 1).

�

Theorem 5.11. Let m =

ï
L1 0
0 L2

ò
where L1 =

ï
a 0
c a

ò
and L2 =

ï
a r
0 a

ò
. Then

for r 6= 0 and c = 0, we have

ΘN,ψA(m) = −θ(a)(q − 1).

Proof. The proof is similar to Theorem 5.10. �

Theorem 5.12. Let m =

ï
L1 0
0 L2

ò
where L1 =

ï
a 0
c a

ò
and L2 =

ï
a r
0 a

ò
. Then

for c = 0 and r = 0, we have

ΘN,ψA(m) = θ(a)(q − 1)2.

Proof. The result follows by using the multiplicative Jordan decomposition and the
dimension calculation in Theorem 4.2. �
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5.2.1. Proof of the Main Theorem. Summarizing the results of Section 5 (Theorem
5.7− 5.12), we see that

ΘN,ψA(m) = 0, if a 6= d or a 6= s

and

ΘN,ψA(m) =

{ θ(a) if c 6= 0, and r 6= 0
θ(a)(q − 1)2 if c = 0, and r = 0
−θ(a)(q − 1) if c 6= 0, r = 0 or c = 0, r 6= 0

if a = d = s. Since
ΘN,ψA(m) = χρ(m),∀m ∈MψA ,

the result follows.
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