A CERTAIN TWISTED JACQUET MODULE OF GL(4) OVER A
FINITE FIELD

KUMAR BALASUBRAMANIAN* AND HIMANSHI KHURANA

ABSTRACT. Let F' be a finite field and G = GL(4, F). In this paper, we
explicitly calculate a certain twisted Jacquet module of an irreducible cuspidal
representation of G.

1. INTRODUCTION

Let F be a finite field and G = GL(n, F). Let P be a parabolic subgroup of
G with Levi decomposition P = M N. Let 7 be any irreducible finite dimensional
complex representation of G and v be an irreducible representation of N. Let m 4
be the sum of all irreducible representations of IV inside 7, on which 7 acts via the
character 1. It is easy to see that myy is a representation of the subgroup My,
of M, consisting of those elements in M which leave the isomorphism class of ¥
invariant under the inner conjugation action of M on N. The space 7y 4 is called
the twisted Jacquet module of the representation 7. It is an interesting question to
understand for which irreducible representations m, we have 7wy 4 is non-zero and
to understand the structure of my 4 as a module for My. When P is the Borel
subgroup of G and 1 is a non-degenerate character of N, a well known result of
Gelfand and Graev [2] says that my 4 is at most one dimensional. There is also the
work of Kawanaka [6] on generalized Gelfand-Graev representations.

In this paper, motivated by the work of Prasad in [7], we study the structure of
a certain twisted Jacquet Module of a cuspidal representation of GL(4, F'). Before
we state our result, we set up some notation and mention the work of Prasad.
Let G = GL(2n,F') and P = MN be the standard maximal parabolic subgroup
of G corresponding to the partition (n,n). Then, M ~ GL(n, F) x GL(n, F) and
N ~ M(n, F). Let ¢ be any character of N ~ M(n, F) and v, be a fixed non-trivial
character of F. It is easy to see that there exists A € M(n, F') such that ¥ = 14,
where 14(X) = ¥o(Tr(AX)). The group GL(n, F)) x GL(n, F') acts on the set of
characters of M(n, F) via,

(91792)~¢A = quz_lAgl
and we get a decomposition of the set of characters of M(n, F') into disjoint orbits
with respect to the above action. For 0 < i < n, we let

4= {Ii 0

0 O} € M(n, F),

where I; is the identity matrix in GL(¢, F'). The matrices 4;,0 <14 < n form a set
of representatives for the orbits under the above action. When ¢ = n, the character
14, is a representative for the orbit of the non-degenerate characters of M(n, F).
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In [7], Prasad explicitly describes mn,y, as a module for M, , when 7 is an irre-
ducible cuspidal representation of GL(2n, F'), ¢4 is the character of N given by
Ya(X) = o(Tr(AX)) where A = A,,. More recently in [4], the work of Prasad was
generalized to GL(kn).

In this paper, we explicitly calculate the twisted Jacquet module of an irreducible
cuspidal representation 7 of GL(4, F') when A = A; € M(2, F). In other words, we
take 14 to be a degenerate character of M(2, F') and calculate the twisted Jacquet
module 7y, ,. Before we state our theorem, we set up some notation. We write
F,,, for the unique field extension of F' of degree m. Let

o Jwereerfo={ly Jiser)
L—{{O yhyEF ,x€Fp U= 0 1 | z € Fy and

Z:H“ O} |aeFX}:FX.
0 a

We write L and U for the opposite of L and U respectively. We write p for a fixed

0 1] We write p* : U — C* for

non-trivial additive character of U and w = L 0

the character of U given by

(D)=l o) =ells 7))

F\le 1)) =P \"z 1" —HM\lo 1)/)-

Theorem 1.1. Let m# = my be an irreducible cuspidal representation of GL(4, F)
attached to a regular character 6 of F*. Let 1y be a non-trivial additive character of
F and A = {(1) 8} Let 4 be the character of N given by ¥4 (X) = ¢o(Tr(AX)).
Then,

TN s =~ (0] px @ indf p*) @ indf p
as My, modules.

We establish the above isomorphism by explicitly calculating the characters of
TN, and (0] px ®ind5 u?)® indé 1, and showing that they are equal at any arbi-
trary element of M,,. Currently we are investigating the problem for GL(2n, F).
We will write up the details at a later time.

It is also interesting to study the case when the finite field is replaced with a
p-adic field. Our hope is that understanding the problem for the finite group case
might help in understanding the problem in the p-adic case. We hope to study
these problems in future.

2. PRELIMINARIES
In this section, we mention some preliminary results that we need in our paper.

2.1. Character of a Cuspidal Representation. Let I be the finite field of order
g and G = GL(m, F'). The representation theory of GL(m, F') is due to J.A. Green
[5]. In this section, we recall some results about computing the character values
of a cuspidal representation. Let Fj, be the unique field extension of F' of degree
m. A character § of F is called a “regular” character, if under the action of the
Galois group of F,, over F', 0 gives rise to m distinct characters of FX. It is a well
known fact that the cuspidal representations of GL(m, F') are parametrized by the
regular characters of FX. To avoid introducing more notation, we mention below
only the relevant statements on computing the character values that we have used.
2



Theorem 2.1 (Green). Let 0 be a regular character of FX. Let m = my be an
irreducible cuspidal representation of GL(m, F') associated to 0. Let ©g be its char-
acter. If g € GL(m, F) is such that the characteristic polynomial of g is not a
power of a polynomial irreducible over F'. Then, we have

©4(g) = 0.
See Page 130 in [3] for the statement of the above theorem.

Theorem 2.2 (Green). Let 0 be a regular character of F,. Let m = my be an irre-
ducible cuspidal representation of GL(m, F) associated to 0. Let Oy be its character.
Suppose that g = s.u is the Jordan decomposition of an element g in GL(m, F).
If ©9(g) # 0, then the semisimple element s must come from F)X. Suppose that s
comes from F. Let z be an eigenvalue of s in Fy, and let t be the dimension of
the kernel of g — z over F,,. Then

d—1

On() = (~1)" | 2 0G| (-1 - @) -

a=0

where g% is the cardinality of the field generated by z over F, and the summation
is over the distinct Galois conjugates of z.

See Theorem 2 in [7] for this version.

2.2. Twisted Jacquet Module. In this section, we recall the character and the
dimension formula of the twisted Jacquet module of a representation .

Let G = GL(k,F) and P = MN be a parabolic subgroup of G. Let ¢ be a
character of N. For m € M, let ©)™ be the character of N defined by ¢¥™(n) =
P(mnm™1). Let

V(N,v) = Spanc{m(n)v — ¢ (n)v |n € N,v e V}
and
My = {m € M | 4™(n) = ¥(n), ¥n € N}.

Clearly, M, is a subgroup of M and it is easy to see that V' (N, ) is an M,-invariant
subspace of V. Hence, we get a representation (my 4, V/V(N,v)) of My. We call
(7w, V/V(N,1)) the twisted Jacquet module of m with respect to . We write
Op,y for the character of my .

Proposition 2.3. Let (7,V) be a representation of GL(k, F) and ©, be the char-
acter of m. We have

1 _
Ony(m) = W Z Or(mn)y(n).
Proof. Consider the projection of V' given by

Py y(v) = ITIVI >yt (n)v.

neN
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We have,

Onp(m) = Tr(mn.p(m))
= Tr(w(m)|V/V(Nv¢))
= TI‘( ( ) © PNw)

|N\ ZTr 7(mn) m

neN
|N\ Z O ( mn
neN
O

Remark 2.4. Taking m = 1, we get the dimension of 7y . To be precise, we have

dlm(c (ﬂ'N P N Z @
TN &,
2.3. Character of the induced representation. In this section, we recall the
character formula for the induced representation of a group G. For a proof, we refer
the reader to Chapter 3, Theorem 12 in [8].

Proposition 2.5. Let G be a finite group and H be a subgroup of G. Let (mw,V)
be a representation of H and x, be the character of w. Then for each s € G, the
character of ind% () is given by

1 _
Xind¢ () (8) = TH]| Z X (tst™).

teG
tst—leH

3. PRELIMINARY CALCULATIONS FOR COMPUTING THE DIMENSION

In this section, we make some preliminary calculations that we need to compute
the dimension of the twisted Jacquet module that we study in this paper.

Let M(n,m,r, ¢q) denote the set of n x m matrices of rank r over the finite field
F of cardinality ¢. It is well known that we have

n—q9) —qJ
#M(n,m,r,q) = H qq_qj)CJ).

For an elementary proof of this fact, we refer the reader to Theorem 2 in [1].
In our case, we have n = m = 2 and r € {0,1,2}. Using the above formula we
can compute the number of matrices in M(2, F) with a fixed rank. We summarize

this information in the following table.

TABLE 1. Number of matrices in M(2, F') with a fixed rank r

T 0 1 2
#M(2,2,7,9) [1][ (¢ =1D(g+1) [ (¢"=1(¢" —9q)

Let A= {1 O} . For o € F, consider the subset Y3, of M(2, F') given by

0 0

Y5 = {X € M(2, F) | Rank(X) = r, Tr((AX) = a}. (3.1)



We compute the cardinality of the subset Y3, for a fixed rank r € {0,1,2} and a
fixed trace a € F. We give the details of the calculation below.

For X = {CCL Z}, we have AX = {8 (lﬂ Suppose that Rank(X) =r € {0,1,2}

and Tr(AX) = a € F. Let Y3, be asin (3.1).

Lemma 3.1. Let a, 5 € F*. Then we have
#Y;ér = #Yé(,ar'

Proof. Let X € Y3,.. Since Tr(AX) = a, we have X = B Z} Let K =
—1
{Boé (1)] Consider the map ¢ : Y, — Y7, given by

H(X)=KX.

Since K is invertible, it follows that ¢ is injective. For Z = {g 1;) } € Yf - let

-1
X = {Z Paf } Then X € Y3, and ¢(X) = Z. Hence the result. 0O

From Lemma 3.1, it is enough to consider the following cases to count the car-
dinality of Y37,

a)r=0,aeF
by r=1,a=0
c)r=1a=1
d) r=2,a=0
e)r=2,a=1

In case a), since r = 0, it follows that X is the zero matrix. Hence it follows that

1, a=0
Yoy =14
#¥30 %7a#Q
In case b), since & = 0, we have a = 0. Therefore,
0 b
x=9Mox ox]

If ¢ = 0, since r = 1, X5 # 0. Therefore, we get (¢> — 1) such matrices. If ¢ # 0,
since 7 = 1, we have Xy = X, for some € F. It follows that

0 0}
c Pcl’
Therefore, we get (¢ — 1)g such matrices. Thus we have

#Ygr =2¢° —q— 1.
In case c), since & = 1, we have a = 1. Therefore,

1 b}

c d
Since r = 1, if ¢ = 0, we have X; # 0, X5 = 8X;. Hence

x=0 7

|

x=' Mo x

0 0
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Therefore, we get g such matrices. If ¢ # 0, since r = 1, we have X, = 8X; for
some ( € F. It follows that

_ |1 5}
x=! 7]
Therefore, we get (¢ — 1)g such matrices. Thus we have
#Yzl,l = ‘12~
In case d), since & = 0, we have a = 0. Therefore,
0 b
x=0 0= x.

Since r = 2, we have ¢ # 0, and X» # 5X;. We can choose X; in (¢ — 1) ways
and X, in (¢? — q) ways. Therefore, we get (¢ — 1)(¢? — ¢) such matrices. Thus we
have

#Yyy =g — 1)
In case e), since a = 1, we have a = 1. Therefore,

x=[ o =tn x

Since r = 2, if ¢ = 0, we have

10

X:{o d

|- x)

where X; # 0, Xo # BX;. Thus we have (¢*> — ¢) such matrices. If ¢ # 0, since
r = 2, we have

S

c d

where X; # 0, Xo # B8X;. We can choose X; in (¢ — 1) ways and X3 in (¢® — q)
ways. Therefore, we get (¢ — 1)(¢? — ¢) such matrices. Thus we have

#Y)o =q*(qg—1).

We summarize the details of the above computations in the following table.

- x)

TABLE 2. Cardinality of Y3,

r 0 1 2
a=0[1[2¢—q—1]q(q—1)
a#0]0 7 ’(g—1)

4. DIMENSION OF THE TWISTED JACQUET MODULE

Let 6 be a regular character of F;* and let m = mg be an irreducible cuspidal
representation of GL(4, F). We write Oy for the character of 7 = mp. Let A =

Ll) 8 and ¥4 : N — C* be the character of N given by

va ([ ]) = votmrcax)). (4.1)

In this section, we calculate the dimension of 7y, . Before we continue, we record
a preliminary lemma that we need.



Lemma 4.1. Letr € {0,1,2} and X € M(2,2,r,q).

o [y 1))~

Proof. The character values can be computed using Theorem 2.2 above.

(¢
f(q _
(q—

We have
- (@ - D(¢*~1), if r=0
1)(q2 - 1)3 Zf r=1
1), if r=2.

O

Theorem 4.2. Let § be a reqular character of Fy* and m = my be an irreducible
cuspidal representation of GL(4, F'). We have

dimg(mn,y,) = (g — 1)

Proof. It is easy to see that the dimension of my 4, is given by

. 1
dlm([j (ﬂ'N’wA) = v Z @9
XeM(2,F)

q

We calculate the following sums

> e

X€eM(2,2,0,q)

> o

XeM(2,2,1,9)
Tr(AX)=0

> e

XEeM(2,2,2,9)
Tr(AX)=0

(1
L0
(1

'©

'©

) wormcaxy)

Jamaxy + Y ef]

separately to compute the dimension of 7y,

For a), we clearly have

1
si=o0(]s

For b), we have

s:=e(ly 7))

>

XeM(2,2,1,9)

Tr(AX)=0

on([s -

=—(¢—1)(¢ - 1)(¢* —q—1).

7

)

(¢—1)(¢* —1)(¢* - 1).

$o(0)  +

(]o ) wermcaxy.

XeM(2,2,1,q)
Tr(AX)=a#0

wmaxy « 2 e

XeM(2,2,2,q)
Tr(AX)=a#0

>

XeM(2,2,1,q)
Tr(AX)=a#0

Yo(a)

1 X

0

1 X

0

1

1

) wormtaxy

) wormtaxyy



For ¢), we have

s=e(0 YD) X W@+ Y @@

XEM(2,2,2,q) XEM(2,2,2,q)
Tr(AX)=0 Tr(AX)=a#0

—ou (|5 ¥]) et - #7)

=(q—1(qg— ).

From (4.2), it follows that

. 1
dlm(c(ﬂ’N,wA) = q7{51 + Ss + 53}

— e D@ - D =) - (- D@ - D a1+ g Dl )
=(¢—1)

5. MAIN THEOREM

Let G = GL(4, F) and P be the maximal parabolic subgroup of G. We have
P = MN, where M ~ GL(2,F) x GL(2,F) and N ~ M(2,F). Let 7 = mp be
an irreducible cuspidal representation of G where 6 is a regular character of F,*.
Let ¢y be a fixed non-trivial additive character of F. In this section, we explicitly
calculate the twisted Jacquet module 7y, where 14 is the character of IV defined
in (4.1). Before we state our main result, we recall some notation and record a few
preliminary lemmas that we need.

1 z
0 1

}|x€F}andZ:

b imereero- ]
LetL—{{Oy}MgEF,xEF,U—

{ g 2} | a € FX}. We write L and U for the opposite of L and U respectively.
We write p for a fixed non-trivial additive character of U and w = {(1) (ﬂ We

write u® : U — C* for the character of U given by

w () =a(els o) =elly 1)

Lemma 5.1. Let My, = {m € M | Y} (n) = ¥a(n),¥n € N}. Then we have
a 0
c d <

My, = 0 7 |a,d,s € F*,c,r € F¢.
0 s
Proof. Trivial.



a 0

Lemma 5.2. Let H = {{ 1 =z
c d

}\a,dEFX,CEF} ansz{{
0 y

hye
F* x e F} Then H and L are subgroups of GL(2, F) and we have

My, ~ H x L.

Proof. For m € My, (as in Lemma 5.1), consider the map ¢ : My, — H x L given

by )
s =([2 9.6 ).

Clearly, ¢ is an isomorphism of My, onto H x L. Indeed, for mi,ma € My,,
we have

_ a1as 0 } {1 roay t + rlsgaglafl} )
¢(mimz) = ( {6102 +dicy dida] 10 s180a5  ay !

= ¢(m1)p(ma).

It follows that ¢ is a homomorphism. It is trivial to see that ¢ is injective. The
result follows by observing that |My,| = |H x L|.
O

Lemma 5.3. H~ F* x L.

a O

Proof. Let h = L: d} € H. Clearly we have h = z/ for some z € Z and £ € L.

aO}{l O}_g
0 al lecat da-'] %"

Since Z and L are normal in H, it follows that H ~ F* x L.

Indeed, we have

h =

O

Theorem 5.4 (Main theorem). Let 6 be a reqular character of F* andm = 7y be an

irreducible cuspidal representation of G. Let p1 = 0| px ®ind{“—] w* and p = indé L
Then

TNps = P1 & P2
as My, modules.

We prove Theorem 5.4 by showing that the character Oy, of Ty, is equal
to the character x, of p = p1 ® ps for all elements m € My, .

5.1. Character calculation for p. Let p; = 0|px ®indlL:] p and pg = indlL] w. In
this section, we calculate the character of the representation p = p; ® po.

Lemma 5.5. Let u be a fized non-trivial character of U. Consider the representa-
tion

p1 = 9|F>< ® 1nd5 Tk
of H. Let xp, be the character of p1. We have

0, ifa+#d
X (a 0 1 yea ! .
P , ifa=d.
0 1

c dD: 0(a) > M(




1 0

-1

1 0]+
Proof. Let t = L y} €L and ¢ = ca da—1

} . We have,

tétil—{l 0}{1 O}{l 0}_{ 1 0
Tz oyl lea™t dat) l—2zyt oy T le4yca Tt —adat dalC

Since p; = O|px ® indg u" using the character formula for the induced represen-
tation, we have

g ([a 0 7 10
= Olr 0 a))XindEw) \ |ca=! da—?

O

Lemma 5.6. Let u be a fized non-trivial character of U. Consider the representa-
tion

p2 = indg; p
of H. Let xp, be the character of pa. We have

0, ifa+#s
({1 ra=? )_ 1 ra~ly!
Xe2\l0 sa=1)) ™ Zu({o ) }),ifa_s.
yeFXx
1oz 1 ra_l}
Proof. Let t = {O y} €L and k= {O sa-1l- We have,

tht™! =

1 x} {1 m_l} {1 —xy_l}i{l —xy '+ raly T +asyta!
0 y/10 sa”'] 0 y ' ] [0 sa~!

Since ps = indé 1, using the character formula for the induced representation,
we have

10



Theorem 5.7. Let p = p1 ® po and X, be the character of p. For m € My, , we
have

(a)(g—1)% if c=0, andr =0
(a)(g—=1) if c#0,r=0 or c=0,r#0
0

ifa=d=s. Otherwise, x,(m)=0.

6(a) if ¢c#0, andr #0
Xp(m):{ 0(a)(q
—0(a)(q

Proof. For m € My,, ~ H x L, we see that

wlle =g " Ee

vl DA

Since X, = Xp, Xp,, the result follows.

and

5.2. Character calculation for 7y y,.

Let
M(2,2,7,q) ={X € M(2,F) | Rank(X) = r},

S(rya, B) ={X e M(2,2,r,q) | Tr(X) = a,Tr(ALle) =S}

For m € My, we write

-7 g mes= [
m = L, and z = L)

where L, = {(é 2

Ly = B ﬂ and X € M(2,F).

Theorem 5.8. Let m = my be an irreducible cuspidal representation of GL(4, F)
and ©yg be its character. For m € My,, ifa # d or a # s, then

Onyp.(m)=0.
Proof. We have
ON,pa(m) = % S 0u(2)alLi ' X).
T xen.r)
Let f(\) be the characteristic polynomial of z. It is clear that
F) = =aPh=d)(A-s).

If a # d or a # s, then f()\) is clearly not a power of an irreducible polynomial over
F. Tt follows from Theorem 2.1 that ©y(z) = 0 and hence the result.
O

Ly

where Ly = {(Cz 2} and Lo = {a

r
Theorem 5.9. Let m = { LJ 0 a

c#0 and r #0. Then, we have

On.ya(m) =6(a).

. Suppose



Proof. 1t is easy to see that
Ly X

1 Ty —1
Onya(m) = py Z O {0 LJ Ya(L 1X)
T xenee,r)

To calculate the character value, we write
1
ONya = g{Ko + K1 + K»}
We

according to the rank of the matrix X and compute each of these terms.
summarize the computations for K; and K in the following tables.

TABLE 3. Computation for K

Partition of M(2,2,1,4) X 00(=)ba(lr 1X) | #5(La.B)
0 vy 3
X € 5(1,0,0) 2y (—1%0(@)(1—q) | (2q—2)
X € 5(1,,0),
o€ B oY (—1%(@)(1—a) | (2q—1)
X €5(1,a,8),
aerpers, | [P Tl DB 0B | @)
a #af
Xes,a,pB)
a,B € F*, {af g} (=1)%0(a) 0 (B) (2q - 1)
a=af

12



TABLE 4. Computation for Ko

Partition of M(2, 2,2, q) X Op(2)Ya(L1™1X) | #5(2,a,B)
X € 5(2,0,0) 2y ] cvwa-a | @12
X € 5(2.0,0),
o€ P O e - | @1
X € 8(2a,8),
acFper, SN | Tt M P
a # af
X € 8(2a,8),
o B e P, Lol | cvren®E | @2
a=af

For simplicity, we let ©g(2)1a(L; *X) = Dx. A simple computation shows

that we have

Ki= >

XEM(2,2,1,9)

where we have

a)<A1::

> o

X€S5(1,0,0)

> Dx
XeS(1,a,0)
aEF*

>, Dx
XeS(1,a,8)

aEF,BEF™
a#af

d) A= > Dx
XeS(1,a8,6)
BEF*

b) Ay =

C) A3 =

Using Table 3, and computing Ay, Az, A3 and A4, we have

a) A = (=1)%0(a)(1 — ¢
b) Az = (~1)%(a)(1 ~ g
c) Az = (-1)*0(a)(q -1
d) Ay = (-1)*0(a)(2q —
It follows that
K= >
XeM(2,2,1,)

Using Table 4, and doing similar calculations we see that

13

O (2)a(L1 ' X) = A1 + Ay + A3 + Ay

Ou(2)a(Lr ™' X) = 0(a)(2¢® — 2¢° + 1).

(5.1)



Ko=) Op(x)¢alli ' X) =0(a)q" —2¢" +2¢° —q).  (5.2)

XEM(2,2,2,q)
Trivially, we have
Ko= > ©(2)pa(Lli ' X)=0(a)(g—1). (5.3)
XeM(2,2,0,q)

From (5.1), (5.2) and (5.3), it follows that
ON . (m) = 0(a).

-

where L1 = {Ccl 2} and Ly = {a

r
0 al Suppose

Theorem 5.10. Let m = }
Ly

c#0 and r =0. Then, we have
Ona(m) = —0(a)(qg—1).

Proof. Proceeding in a similar way as in Theorem 5.9, we can compute the character
value. We record the calculations that we need in the following tables.

TABLE 5. Computation for K;

Partition of M(2, 2,1, q) X O¢(2)a(L1~1X) #S(1,a, B)
X €5(1,0,0) oy By £0, (%@ -a); | (g 1)
Ify =0, (-1)%0@)(1-)(1-¢*) | (¢—1)
X € 5(1,,0),
ae P 0 1ty #0, (~1°0(a)(1 - a); (a1
Ify =0, (~=1)*0(a)(1 - ¢)(1 — ¢*) q
X es1,a,pB),
aempers, | [# = (a-ahd) (~1)0(@)(1 - )0 () (a—1)
a # af
X € 5(1,0,8),
af e, Y] (~1)°6(a)(1 — 0)0a () (20— 1)
a=af

14



TABLE 6. Computation for Ko

Partition of M(2, 2, 2, q) X Og(2)Ya(L1~1X) #S(2,a,8)
X €5(2,0,0) oy D@1 -a) | (- 1?
X € 5(2,0,0),
ac P 2 Y (D@1 —a) | (-1
X € 5(2,0,8),
a€Fper, [ Yasl | D@0 - @) | @ —at1
a #af
X €5(2,0.8),
aBeFX, 2t | evte@a - 0w® | @12
a=af

Using Table 5 and Table 6 and proceeding as in Theorem 5.9, we have

Ki= > Op(2)a(L1 " X) = 0(a)(qg— 1)(—¢* + 242 —q— 1)

XeM(2,2,1,q)

and

Ko= Y O(2)pallai'X) =0(a)(q—1)(a—q°).

XeM(2,2,2,q)

Trivially, we have

Ko= 3 0u(2)ea(li X) = 0(a)(g — 1)(1 - ).

XeM(2,2,0,q)

Combining 5.4, 5.5 and 5.6, we conclude that
Onya(m) =—0(a)(qg—1).

L,

Theorem 5.11. Let m = {0 L

forr#0 and ¢ =0, we have

0} where L1 = {a
c

Onya(m) = —0(a)(g - 1).

Proof. The proof is similar to Theorem 5.10.

Ly

Theorem 5.12. Let m = {0 L

forc=0 and r =0, we have

ONpa(m) =0(a)(qg— 1)

Proof. The result follows by using the multiplicative Jordan decomposition and the

dimension calculation in Theorem 4.2.
15

andng{a .

O}Mherele{a 0} andng{a T.
c a

Then

Then

O



5.2.1. Proof of the Main Theorem. Summarizing the results of Section 5 (Theorem
5.7 — 5.12), we see that

Ony,(m)=0,ifa#dora#s
and
0(a) if ¢c£0, andr #0
OnN,p,(m) = 0(a)(¢g—1)* if ¢c=0, and r =0
—0(a)(g—1) if ¢c#0,r=0 or ¢=0,7#0

if a =d = s. Since
ON,pa (M) = Xp(m),Vm € My,,
the result follows.
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